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Abstract effort in developing kernel-based methods for building dis
criminatory models for remote homology detection and fold
recognition. This research has led to the development of a
Motivation:  Protein sequence alignment plays a critical role NUMber of proteirstring kernelsthat determine the similar-
in computational biology as it is an integral part in many &ss ity between a pair of proteins as a function of the number of
tasks designed to solve problems in comparative genoriostre  sufficiently similar short subsequences that they shares@h
and function prediction, and homology modeling. string kernels have proven to be extremely effective indsuil
ing very accurate models, and these methods are among the
Methods:  We have developed novel sequence alignment algobest performing schemes for remote homology prediction and
rithms that compute the alignment between a pair of sequencefold recognition [22, 21, 30] .
based on short fixed- or variable-length high-scoring sgosaices. Motivated by these developments in string kernels, the
Our algorithms build the alignments by repeatedly selectine i in this paper is designed to address the question as to
highest scoring pairs of subsequences and using them taraons  y,o oy 4ent to which, ideas motivated by these string kernels
small portions of the final alignment. We utilize PSI-BLAShH-g . . .
. ! o can be used to build alignments between a pair of sequences.
erated sequence profiles and employ a profile-to-profile isgor . . .
scheme derived from PICASSO. Toward th|s_ goal, we developeq a.se_t of window-based align-
ment algorithms that are heuristic in nature. Our methods

Results:  We evaluated the performance of the computed alignincrementally constructed the alignment by using the rsghe
ments on two recently published benchmark datasets andarechp  SCOring pairs of residues between the two sequences at each
them against the alignments computed by existing stateesfrt  Step. The residue pair scoring was borrowed from string ker-
dynamic programming-based profile-to-profile local andtglbse-  nel theory where to score the residue pairs in consideration
guence alignment algorithms. Our results show that the nga-a  we examined short subsequences, referred d4orers cen-
rithms achieve alignments that are comparable or betterhtiseé  tered around each of the two residues. We introduced several
achieved by exi§ting algorithms. Moreover, our resgltpaibowed heuristics to identify aligned residue pairs using theers

tha_t these algo_rlthms can _be usedto provm!e better mf_qmais to coupled with profile information.

Wh'Ch Of.the aligned positions are more rel[ablg—a critipace of We determined the quality of our alignment methods
information for comparative modeling applications. ;

Suppl. Data http://bioinfo.cs.umn.edu/supplements/win-aln/ by evaluation on a template-basgq [7, 31] and a model-

' ' e ' based dataset [8, 5]. Our empirical results on the two
datasets showed the competitive performance of our intro-
duced schemes to state-of-the-art methods. We also esdluat
Alignment algorithms serve as the most basic sequence anajur methods by determining the reliability of the aligned po
ysis methods in computational biology and have a wide rangsitions [17, 4, 32, 25, 36]. The positive results for someuwof o
of applications dealing with sequence database searchinglignment algorithms on such a reliability metric is very en
comparative modeling, protein structure and function jgred couraging due to far reaching applications, like compegati
tion. modeling.

The current state-of-the-art sequence alignment algo-
rithms have a well defined optimal dynamic programming2 Methods
based solution, introduced decades ago. These optimal alg
rithms, Smith-Waterman [35] and Needleman-Wunsch [27
solve the local and global sequence alignment problems réFhe alignment algorithms that we developed take advantage
spectively. Over the years, alignment methods have addancef evolutionary information by utilizing PSI-BLAST [2] gen
with several variations of the optimal alignment method us erated sequence profiles.
of gap modeling techniques [13], heuristics [1, 29], andenor  The profile of a sequenc¥ of lengthm is represented by
recently the use of profile [12, 7, 2] and structure informa-two m x 20 matrices. The first is its position-specific scoring
tion [18]. matrix PSSV that is computed directly by PSI-BLAST us-

In recent years, there has been a considerable researity the scheme described in [2]. The rows of this matrix cor-

1 Introduction

.1 Sequence Profiles and Profile Scoring



respond to the various positions } and the columns corre- 2.2.1 Central Alignment Scheme (CA). This is the
spond to the 20 distinct amino acids. The second matrix is itsimplest alignment algorithm that we developed and com-
position-specifidfrequencymatrix PSFM that contains the putes the alignment by progressively aligning the pairs of
frequencies used by PSI-BLAST to derive PSgMThese  residues that have the highest positisgore values subject
frequencies (also referred to tsget frequencief26]) con-  to the constraint that they do not conflict with the portion of
tain both the sequence-weighted observed frequencies (alshe alignment that has been constructed thus far.
referred to agffective frequencig26]) and the BLOSUM62 Specifically, given two sequencés andY of lengthm
[15] derived-pseudocounts [2]. andn, respectively and a value far, it starts by computing
Many different schemes have been developed for detetthe setS,, of residue-pairs that are candidates for inclusion in
mining the similarity between profiles that combine infor- the alignment by considering only the pairs that have pasiti
mation from the original sequence, position-specific sapri wscore values. That is,
matrix, or position-specific target and/or effective frequ
cies [26, 37, 24]. In our work we use a scheme that is derived Sw = {(2i,y;) | wscore(zi, y;) > 0}, ®3)
from I_DICASSO [14, 26] that was r_ecently used in dev_e_lopintherew <i<m-—wandw < j<n—
effective remote homology detection and fold recognitibn a
gorithms [30]. Specifically, the similarity score betwebae t
ith position of protein’sX profile, and theith position of pro-
tein'sY profile is given by

w. Then it per-
forms a series of iterations in which it performs the follogi
three steps: First, it extracts fraffy, the residue-pair with the
highestwscore value(z;-, y;-): Second, it aligns:;- against
y;=- Third, it removes fromS,, all residue-pairs that cannot
be part of a valid alignment given thaf- andy;- have been

20
Sxy(i,7) = >, PSFMx(:,1) PSSM-(j,1) + aligned with each other. This process terminates whgn
=1 1) becomes empty. Positions that do not belong to any of the
20 ] ) selected residue pairs are left unaligned (i.e., aligneihag
lgl PSFMy (j,1) PSSMx (4, 1), spaces).

The residue pairs that need to be removed aréz(i), y;)
where PSFM (i,1) and PSSM(i,1) are the values cor- Vi, (i) (zg,y;-) Yk, (i) (zx,y) V(k > * Al < j*), and
responding to thelth amino acid at thesth position (V) (zx,y1) V(k < i* Al > j*). The first two conditions re-
of X’s position-specific scoring and frequency matrices.move froms,, all residue-pairs involving:;- or y;«, as these
PSFMy (5,1) and PSSM(3,1) are defined in a similar fash- positions have now been aligned, whereas the last two condi-
ion. tions remove the residue-pairs that if aligned, will intnod

inversions in the alignment.

2.2 Window-based Alignments
2.2.2 Subset Alignment Scheme (SA). A limitation
of the central alignment scheme is that it may leave a large
number of residues unaligned because (i) it only considers
the residue-pairs with positivescores, and (ii) it will not
lign the first and lasi positions of the two sequenceS,(
ontains only pairs involving interior residues).

To address this problem we developed the subset align-
ent scheme (SA), which can be considered an extension to
the CA scheme. Specifically, the SA scheme modifies the
second and third steps of the CA algorithm as follows. Dur-
ing the second step, in addition to including thg-, y;-)

The overall methodology of the alignment algorithms devel-
oped in this work is to incrementally construct the aligntnen
by using various heuristics to identify the pairs of aligned
residues. The key idea shared by these algorithms is that th
determine whether or not a pair of residues should be aligne
together by examining the (short) subsequences, refeored t
aswmers, that are centered around each of the two residue%
Given a sequenc& of lengthm and a user-supplied pa-
rameterw, the wmer at position; of X (w < i < m — w)
is defined to be thé2w + 1)-length subsequence & cen-

tered at positiort. That is, thewmer containsz;, the w pair in the alignment, it also includes in the alignment ad-p

amino acids before, and the amino acids aftex;. A pair ) : . ’ '
of wmers are compared by computing their ungapped align\-/IOUSIy unaligned residue-pairs of the forfm;- 1x, y;-1x)

i for — k . That is, it can potentially include all
ment scores. Given two sequencésandY’, the ungapped W< k< tw p y

i i " bet ir by ¢ residue-pairs involved iffz;«,y;~)’s wmer. Note that due
alighmen SCOI"ewscore(xl,y]), elween a pair obmers al v, the incremental nature of the algorithm, the second step
positions: andj of X andY’, respectively is given by

essentially extends the alignment around g 4 «, yj++)
w residue-pair until it encounters a residue (from eitieior
wscore(z;,y;) = Z Sxy(i+k,j+k), (2) YY) that has already been aligned. We will refer to this as the
k=—w alignment extensionperation. During the third step the SA
algorithm removes frong,, all residue-pairs that are now in

whereSx y (i+k, j+k) is the alignment score between .  conflict with all aligned residue-pairs that were selected i
andy; and is computed using Equation 1. second step.



2.2.3 Central and Subset Alignment Scheme 3.1.1 Template-based Approach. The first method
(CSA). A potential problem with the SA scheme, is that it for evaluating alignment quality compares the differertoes
may align a pair of residue@:;-,y;++%) With each other, tween the alignment generated to template alignments [7, 31
even whers,, contains residue-pairs with highescore val-  8]. These template alignments are generally derived fram va
ues for either or both of the two residues. This happens, baeus structural alignment programs and are considered to be
cause SA's alignment extension operation extends the-aligrthe gold standard.
ment as soon as it extracts the highest scoring residue pair We use three quality scores, namely the developer’s score
from S,, and there may be some higher-scoriamers for  (fp) [31], the modeler’s scoreff,) [31] and the Cline score
these positions i§,,. (CS) [4] to compare the template alignments with the gen-
For this reason, we developed a hybrid scheme that conerated alignments. The developer’s score is the number of
bines the CA and SA approaches. Specifically, the nevcorrectly aligned residue pairs in the generated alignrdient
scheme first computes a CA alignment and then augmentsvided by the length of the template alignment. (Tlargth
by applying the alignment extension approach used by SA tof an alignment is defined as the number of aligned residue
each pair of its aligned residues. pairs.) The modeler's score computes the ratio of correctly
aligned residue pairs with the length of the generated align
2.2.4 Variable wmer Alignment Scheme.  Thealign-  ment. The Cline score was developed to address the issues
ment schemes, CA, SA, and CSA were discussed in the cofwith f,, and fp by penalizing both under-alignment and
text of a fixed lengthumer. The potential drawback of this over-alignment, and also crediting regions in the gendrate
scheme is that ifu is set to a relatively large value, it may fail zlignment that may be shifted by a few positions relative to
to identify positive scoring subsequences; whereas ifsets  the reference alignment [7, 4]. The steps for computation of
too low, it may fail to reward residue-pairs that have retl§i  the Cline score can be found in the study [4].
long similar subsequences. Note that thef, andf,; scores are equivalent to the more
For this reason we extended the algorithms to also operatgaditional measures oécall andprecision[9], respectively
with variable lengthumers. The key difference from the use that are used extensively to measure prediction performanc
of fixed lengthwmers centered around residue paifsand  |n the rest of the discussion we will primarily refer it
y; is the fact that we define length” in the range oft tow,  and f,; by the more intuitive names of recall and precision,
such that respectively.

w = argmax Kscore(zi, y;), (4)  3.1.2 Model-based Approach. An alternative to us-
ing a template-based approach is to build a structural model
whereKscore is the(2K + 1) —subsequence score as definedfrom the alignment and evaluate the similarity between the
in Equation 2. model and the template structure [8, 28]. Starting from the
Our alignment schemes start by computing thegtof  alignment between a pair of proteins (one protein consitlere
residue pairs that are candidates for inclusion in the mm to be the query protein, the second considered to be the tar-
by considering only pairs that have positivéscore values.  get protein whose 3D structure is known), a model protein
With this change all steps of our alignment algorithms remai s created which consists of the carbon alpia, atoms of
same. Note that the SA scheme using the variable lengtthe query protein. The atomic coordinates of this model pro-
wmers will have its alignment extension operation extendedein are the atomic coordinates of the target protein ice., f
till a maximum length ofw*. every aligned pair of residues, the query protein ha€its
As a notation reference we denote the variabter  atomic coordinates replaced by the corresponding atomic co
alignment algorithms b’ A", SA®, andCSA” to distinguish  ordinates of the target protein. The similarity between the
them from the fixedvmer alignment algorithms denoted in two structures (the model protein and target protein) ater

this study byCA/, SA/, andCSA/. structural super-imposition [23], is used as an assessafient

. sequence alignment quality.
3 Materials In our study, we computed this similarity using the
3.1 Evaluation Methodologies and Metrics LGscore [5] that takes into account the common segments

] between the pair of proteins. LGscore computes the sim-
We evaluated the performance of the proposed window-bas€yity between two protein structures (model and template
alignment algorithms by considering (i) the quality of the strycture) based on the common segments between them. It
alignment itself and (ii) the extent to which the inherent or s desirable to have long common segments with high struc-
dering of the aligned pairs of residues can be used to igentify,ra| similarity. The LGscore measure was used to evalu-
portions of the alignment that are more reliable than othersate the structures obtained by threading methods [28] in the
In order to assess alignment quality we used two widely usegApasp2 [10] and LiveBench [3] experiments as well as a
methodologies, often referred to as template-based [7] angequence alignment quality measure [8].
model-based [8], whereas the reliability was assessedlby fo  Note that instead of LGscore other structural similarity

lowing a methodology that was recently proposed in the conmethods or protein modeling assessment measures can be
text of comparative modeling [36].



used for evaluating the quality of the model (e.g rmsd meafrom the multiple sequence alignment constructed after five
sure [19], global distance test score (GDT) [38] and Max-iterations using ar value of 1073. The PSI-BLAST was
Sub [34]). However, for this study we show only the re- performed against NCBI's nr database that was downloaded
sults using the LGscore method due to similarity in resultsn November of 2004 and contained 2,171,938 sequences.

obtained when tested with the other measures. In the case in which PSI-BLAST could not produce mean-
o _ _ ingful alignments for certain positions of the query sequegn
3.1.3 Reliability of Aligned Regions. In compara-  the corresponding rows of the two matrices are derived from

tive modeling and several other applications, itis esaéntit  the scores and frequencies of BLOSUM62.
only to align residue pairs but also to provide some reliabil

ity index or confidence measure associated with the aligned Results
residue pairs. While building protein structure models us-

ing comparative modeling strategies it is important toudel In tht'sl sepgon, i\)/ve e(;/alll_Jate thet pegformancg of tthhe incre-
only those regions where the alignment is considered to b ental window based atignment SCheémes using the various

good or reliable [17, 4, 32, 25, 36]. enchmark datasets and evaluation metrics discusses4in Sec

One of the reliability assessment measures calculated gon 3.
smootheq profiIe—deriveq alignment score. The score fdn eac; 1 Assessment
of the aligned residue in the template alignment was com-
puted using a triangular smoothing window of size The
reliability was assessed by setting up a threshold valutaéor Table 1 provides an extensive set of results illustratirgy th
smoothed profile-derived score [36]. Our approach for +eliaperformance of the CA, SA, and CSA schemes on the
bility assessment was very similar to this method. template-based dataset for different values afnd for fixed-
Using the template-based benchmarks we evaluated the rend variable-lengthwmers. Note that the column labeled
liability of the aligned residue pairs by ranking the aligne “CS<i5%” shows the CS results for the subset of sequence-
pairs in the query alignment. We score the aligned positiongairs that have less tha3% sequence identity (i.e., a subset
using fixed lengthwscores. The reliability measure is com- that is inherently harder to align well).
puted as the recall at different percent levels of incolyect

aligned residue pairs (up t&9. The notion of a hit is de- 4:1.1 Central vs Subset vs Combined.  The results

query and template alignments. The difference in our reliaP€rform better than either CA or CSA, whereas CA performs

bility scheme was the use of a profile-to-profile scoring func consistently the worst. The only exception is for variable-
tions equally weighted at all positions of thener rather than ~ €ngthwmers, in which SA’s performance is comparable to

of Incremental Window-
based Alignments

using a smoothing/mer [36]. that of CSA. The relative advantage of S_A is more evident if
we consider the subset of sequence-pairs with less that 15%
3.2 Datasets sequence identity, for which its CS scores are consistently

her than those achieved by the other schemes (SA achieves

hi
For the template-based assessment scheme we used a dat%s%&)re of 0.649 whereas CA and CSA achieves scores of
created to evaluate the various profile-to-profile scormgt 5 14 -0 628 respectively)

tions for protein sequence alignment [7]. The dataset stsi
of 588 reference alignment pairs having high structural sim
ilarity but low sequence identity{ 30%). This dataset was
selected to have a high pairwise structural similarity gshe
consensus of FSSP [16] and CE [33].

By looking at the performance of the various schemes in
terms of recall, we can see that SA’s higher CS-based perfor-
mance is due to the fact that it achieves significantly better
call values than the other schemes. This was to be expected,

For th del-based uati h dab s it was one of the motivation behind the development of
or the model-based eva uat|o_n scheme, we used a bencgu - ajso, the precision-based results show that CA achieves
mark created from SCOP 1.39 filtered to only contain do-

. ) A . . .~ somewhat better precisions than CSA, whereas SA’s preci-
mains with less thab0% pairwise sequence identity [8]. This P P

. ) . ; sion is comparable or better to that of the other schemes.
dataset contains of 9983 protein domain pairs, such tha& 190 on| P

belong to the same families, 3101 share only the same supes-1 2  Fixed vs Variable Length Alignments. Ana-
family, and 4979 share only the same fold. Due to the nontyzing the performance of alignment methods that use fixed
symmetrical nature of models built from alignments, eachength wmers compared to the methods that use variable
pair of sequences were evaluated twice—leading to a benc%ngthwmers, we notice that for the CA and CSA schemes,
mark of 19966 domain pairs. for the samawmer length the recall as well as the precision
scores have higher values. Note that the higher recall is ex-
pected, because the methods using a variahler size win-
The position specific score and frequency matrices used bgow will have a higher flexibility in allowing larger numbef o
the profile-based scoring method of Equation 1 were genwmers (with a positive score) to be picked for the candidate
erated using the latest version of the PSI-BLAST algorithmsetS’.,.

(available in NCBI's blast release 2.2.10), and were derive ~ Another key observation is th&A7 performs better in

3.3 Profile Generation



terms of recall thai8A"”. This is because for the same value not significantly change (e.g., CS scores stay within a tight
of w, the w* value selected b§A® may be smaller thamw range), wherea€A/’s performance tend to deteriorate with
(i.e., the value used byA’). As a resultSA’s alignment increasingw. This latter behavior is due to the fact that as
extension operations will involve longer windows, whicimca we increase thevmer size, fewerwmers will have a posi-
produce longer alignments th&\”, and thus higher recall tive score and hence will not be included as part of the set
values. S.. We see a direct effect of this leading to a decrease in
the recall scores. Also increase in threner size does lead
to a decrease in precision score as well. This is because for a
Table 1: Alignment Accuracy Results on a Template-basethrgerwmer window the positive scoringimers may not be
Dataset. due to the more “central” positions. Evidence of this can be
seen by comparing the behavior of A" scheme in which
f M /o CS CSasn both the precision and recall scores stay the same.
reeon e Another key observation is that the schemes that utilize

fixed variable lengthumers tend to perform better for larger values
central of w. This is because of the flexibility associated with using
wmer = 2 0.805 0.791 0.803 0.600 a variable lengthvmer.
wmer = 3 0.799 0.776 0.794 0.596
wmer = 4 0.791 0.756 0.782 0.587 4.1.4 Alternative Performance Assessment For
wmer =5 0.776 0.732 0.764 0572 this dataset too, we performed a thorough parameter study
subset by varyingwmer lengths for our alignment schemes. We ob-
wmer = 2 0.802 0.835 0.826 0.626 served similar results as seen in T:B1 for the templatecbase
wmer = 3 0.805 0.842 0.831 0.642 dataset. In Table 2 we report only the best results achieved
wmer = 4 0.805 0.842 0.832 0.644 rather than showing results for varyingner sizes as done in
wmer =5 0.802 0.838 0.828 0.649  Tablel.
combined Firstly, we notice the difference in the LGscore values for
wmer = 2 0.791 0.822 0.816 0.619 the family, superfamily and fold pairs clearly showing ttie d
wmer = 3 0.785 0.819 0.814 0.623 ficulty nature of the three sets of problems, with the folitgpa
wmer = 4 0.779 0.811 0.808 0.624 being the hardest to model followed by the superfamily and
wmer =5 0.767 0.798 0.798 0.624  family level pairs.
variable Similar to the template-based results, $14 scheme has
central the best LGscore at the family, superfamily and fold levets f
wmer = 2 0.799 0.804 0.809 0.595 both the variable and fixedmer setting. A surprising fact
wmer = 3 0.802 0.807 0.812 0.605 was that the performance results as measured by the LGscore
wmer = 4 0.805 0.797 0.810 0.611 did not decrease with increasingmer lengths. In fact, we
wmer = 5 0.805 0.797 0.807 0.614 observed that the use of a highemer size of 5 for the fixed
subset length scheme achieved the best results of 1.53 and 4.29 for
wmer = 2 0.798 0.827 0.820 0.615 the fold and superfamily level problems. We also observe
wmer = 3 0.798 0.834 0.825 0.629 slightly better performance for the variablémer schemes
wmer = 4 0.798 0.836 0.827 0.634 compared to the fixedmer schemes.
wmer =5 0.794 0.832 0.823 0.636 The performance of th€ S A¥ alignment method was the
combined lowest for both the family and superfamily level pairs which
wmer = 2 0.795 0.822 0.813 0.600 contrasts the results seen previously on the templatedbase
wmer = 3 0.797 0.827 0.820 0.614  datasetin Table 1.
wmer = 4 0.800 0.831 0.824 0.621 . . .
wmer =5 0.800 0832 0825 0.628 4.2 Comparison with Earlier Results

4.2.1 Template-based Benchmark. Table 3 shows

In the tablef,, denotes the Modeler's scorép denotes the comparative performance of our window based schemes
the Developer's score, CS denotes the Cline score, arRf@inst some of the best profile-to-profile scoring techesqu
CS<15% denotes the Cline score for a subset of sequencgudied previously [7]. In the table we show results for the

pairs sharing less thal5% sequence identity. schemes pdotp, correlp and coach. pdotp uses dot product
to compute the similarity between two profiles, correlp com-

putes the Pearson correlation between the profile columns,

4.1.3 Sensitivity of Schemes with respect to vary- whereas coach [6] uses an asymmetrical complex dot product
ing wmer size Looking at the performance achieved by between the HMM profile and a position frequency matrix.
the various schemes in Table 1w@asanges from two to five, We show results of these schemes as published previ-

we see that in general, SA’s and CSA’s performance doesusly [7] using SAM T99 profiles (The performance of these



Table 2: Alignment Accuracy Results on a Model-
based Dataset.

=1.0)

Family Superfamily Fold

0.75, zs:

Alignment Scheme

CA7 (2) 14.86 1.66 0.04 g
SA’ (5) 16.44 4.29 1.53
CSAY (2) 15.47 253  0.203 H
CA” (5) 15.10 243  0.12
SA” (5) 16.48  4.05  1.05
CSA” (5) 1405 232  0.14 :

The numbers in the parameter indicate ihaer
length for the various alignment schemes.

alignment methods using SAM T99 profiles is 3-4% better
than the PSI-BLAST based profiles [7]) Our methods show,
comparable performance to these alignment methods using
SAM T99 templates.

We also compare the results of the window based align-
ment methods to a local Smith-Waterman [35] alignment al-
gorithm implementation (SW-PSSM) using the same profile-
to-profile scoring function as used for the window based
alignments (Equation 1). Within this local alignment frame
work we use an affine gap model along with a zero-shift pa-
rameter [37] to maintain certain necessary requiremenss of
good optimal alignment. We optimize the gap modeling pa-
rameters (gap openingd), gap extensiongg)) and the zero
shift value ¢9 to obtain highly optimal alignments for com-
parative purposes.

We observe in Table 3 that the incremental window-
based alignment schemes perform very competitively when
compared to our fully optimized SW-PSSM implementation.
Also notice the superiority of our optimized SW-PSSM im-
plementation to the alignment methods using pdotp, correlp
and coach as their profile-profile scoring functions. The dif
ference in the SW-PSSM results with the other standard-align
ment techniques may be due to the use of a more sensitive
PICASSO based profile-to-profile scoring function. Further
these results verify that we are comparing our novel win-
dow based alignment methods to a fully optimized SW-PSS
alignment algorithm.

The performance of the window-based scheme is actu-
ally very promising. We select one of the better performing
schemes§A7) and compare it to the optimized SW-PSSM
algorithm using the CS score. Figure 1 shows that the com-
parative performance of the two methods across the 588
alignment pairs in the dataset.

a

4.2.2 Model-based Benchmark. Our results in Ta-
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Figure 1: Cline Score Comparison of SW-PSSM scheme
againstSA/ scheme for the 588 alignment pairs in the
template-based dataset

Table 3: Comparative Performance with Earlier Results
on Template-based Dataset.

Alignment Scheme  fj,

fp  CS CS<is%n

SAT (3) 0.805 0.842 0.831 0.642
SAY (4) 0.798 0.836 0.827 0.634
SW-PSSM 0.803 0.852 0.841 0.689
pdotp (T99) 0.806 0.829 0.832 0.697
correlp (T99) 0.794 0.835 0.829 0.702
coach (T99) 0.797 0.830 0.829 0.697

The optimized SW-PSSM results are achieved us-
ing go = 3.0, ge = 0.75, zs = 1.0. In the table
pdotp, correlp, coach use a dot product, correlation
function, and a HMM based profile-profile scoring
function. T99 denotes the use of SAM T99 based
profiles respectively.

(global sequence alignment using a global scoring matrix),
NFSI (3D-PSSM [20] based global sequence alignment against

profile [11] obtained from PSI-BLAST), SSPSI [8](3D-

PSSM based global sequence alignment against a profile
obtained from PSI-BLAST using secondary structure in-
formation) and structural (alignment using structuralesup
imposition by Igscore2) alignment methods published previ
usly [8]. The structural alignment sets up a higher refesen
quality score for the benchmark. Using sequence alignment
techniques we would like to achieve these high levels of accu
racy. The results shown in Table 4 for the various previously

ble 4 reiterate the closeness in performance of the incremeffuPlished schemes, as well as for our methods are the best
tal window based alignment method to the highly optimizedaCh'e"ed after optimization of the various parameters.

SW-PSSM alignment algorithm for the family, superfamily
and fold level subsets.

We further analyze the data by annotating a model as being

correct based on the LGscore value. As done in the study [8]

Table 4 also shows results for the optimized local (localVe Use the less strict LGscore cutdfb(®) to define a correct

sequence alignment using a global scoring matrix), globafnodel and a more stringent cutoffo(-*) to identify models
of higher quality. The percentage of models correct based



on these cutoffs are shown in Table 5. Both the incremental
window-based alignment methods, as well as the SW-PSSM Tapble 5: Fraction of Correct Models based on the
alignment method, are able to pick the correct models with | Gscore.

similar degrees of accuracy. Our techniques also seem to

identify a higher percentage of correct models when com- _LGscore <107? <107°
pared to the previously studied schemes, especially PSI and_Alignment Scheme Fm Sf Fd Fm Sf Fd
SSPSI, both of which also incorporate some profile informa-  SAY (3) 4 21 5 55 8 0
tion. As seen from Table 5 our methods are able to pick a SA” (3) 74 28 4 55 8 0
larger fraction of higher quality models for the family and  SW-PSSM 74 27 6 56 8 0
superfamily levels. local 66 10 1 46 2 O
global 70 12 1 49 3 0
4.2.3 Reliability Performance. Table 6 shows the PSI 72 18 4 50 4 O
reliability performance for the window based alignment SSPSI 73 21 6 53 5 O
schemes in comparison to the optimized SW-PSSM based structural 86 60 51 66 21 21
alignment scheme. These results correspond to the average
recall scores obtained for all the alignment pairs at diffier The optimized SW-PSSM results are achieved using
error rates using the procedure described in Section 3.1.3. go = 3.0, ge= 0.75, zs= 3.0. All the results are op-

Though the SW-PSSM algorithm showed slightly better  timized for their relevant parameters. Fm, Sf and Fd
performance in terms of the overall alignment quality (Ta-  denote the family-level, superfamily-level and fold-
ble 3 and Table 4), itis interesting to note the window-based level performance results respective|y_
schemes using variable lengihmers showed far better per-
formance at the lower error rates. In particular before see-
ing any incorrect predictions in the ranked aligned positjo Table 6: Reliability Assessment: Recall for the fik$t er-
the alignment methods using variable lengtmers have a  rors.
recall around 0.260 compared to the recall of 0.205 for the
SW-PSSM algorithm. Note that the recall performance of Method 0% 1% 2% 3% 4% 5%
the CSA scheme is slightly better than the CA scheme and cAf ©) 0.176 0.281 0.365 0.434 0.494 0.541
slightly worse compared to the SA alignment scheme. Thesega f (3) 0.186 0.297 0.384 0.459 0519 0.563
results can be explained by the fact that the high scoring cga f (3) 0.180 0.286 0.370 0.438 0.498 0.545
residue pairs aligned by CA are also aligned by the CSA v 3) 0254 0.364 0450 0.515 0566 0.603

scheme. SA(3)  0.260 0.368 0.454 0.521 0.572 0.612
CSA® (3) 0.260 0.367 0.454 0.520 0.571 0.610
SW-PSSM  0.205 0.320 0.405 0.480 0.541 0.586

Table 4. Comparative Performance with Earlier Re-
sults on a Model-based Dataset.

The optimized SW-PSSM results are achieved using

Alignment Scheme Family Superfamily Fold go — 3.0, ge = 0.75, zs — 3.0. The numbers in the

SA’ (5) 16.44 4.29 1.53 parenthesis represent thener width used for the results

SAY (5) 16.48 4.05 1.05 shown.

SW-PSSM 16.66 4.38 2.02

local 14.1 2.0 0.7 string-kernel theory (use of ungapped subsequences,dscore

global 15.1 2.9 1.4 using profiles) played an integral role in the design of these

PSI 15.8 3.3 1.4 alignment algorithms.

SSPSI 16.0 4.1 2.6 Our comprehensive experimental study on the template-

structural 19.4 9.1 8.0 based and model-based benchmark datasets showed com-

parable performance to a fully optimized Smith-Waterman

The optimized SW-PSSM results are achieved profile-based implementation. In terms of the reliabiligrp
usinggo = 3.0, ge = 0.75, zs = 3.0. All the formance of the aligned residue-pairs we notice that tigmali
results are optimized for their relevant parame- ment schemes using variable lengtmers had very promis-
ters ing results. Amongst the window-based schemes we no-

ticed that the subset alignment, SA using both the fixed and
. variablewmers showed the best performance. The sensitiv-
5 Conclusion ity analysis done by varying themer size showed the SA

In this study we developed algorithms that identify theSChemes to have a robust performance.

: . . . . The simplicity of our methods and competitive alignment
aligned pairs of residues using an incremental approach,

These algorithms capture the most similar pairs of Subsequality as well as aligned region reliability will lead toeth

guences as part of the final alignment. The concepts fronz]ipphcatmn of our algorithms in key bioinformatic problsm



especially comparative modeling.
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